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TECHNICAL MEMORANDUM

A BIOSENSOR FOR CADMIUM BASED ON BIOCONVECTIVE PATTERNS

INTRODUCTION

Protozoa such as Tetrahymena pyriformis take up heavy metals from water,

producing internal concentrations greater than surrounding levels. [1] As a

consequence, these freshwater organisms serve as successful model systems for

studying aquatic contamination, as well as for detecting toxicity. Compared to direct

chemical analysis, toxicity assays using protozoa have potential advantages: (1) high

levels of accumulation make for sensitive detection; (2) in vivo monitoring gives an

integrated picture of pollution, thus not masking intermittent exposure; (3) as a

more direct indicator, it can describe biological levels likely to enter into higher food

chains; and (4) practical removal systems can be based on regrowth or early isolation

of contaminated organisms.

Previous work has used Tetrahymena as an indicator for cadmium toxicity.

[1] As a quantitative monitor, the basis for its assessment has been either specific

growth rate, biomass or ultrastructure. [2] For example when added to 2 day old

Tetrahymena cultures, cadmium ions inhibit further growth in a dose-dependent

manner. About 30% inhibition was detected in the presence of 10 JaM cadmium

concentration, with virtually 100% inhibition at 30 jaM. No significant changes were

detected in 1 jaM cultures. These assessments have been confirmed in various studies

using different media, in each case requiring either cell counting procedures, x-ray

microanalysis, or electron microscopy. For practical assays using a large statistical

sample, these laboratory techniques can be both laborious and prohibitively

expensive.

The present work uses macroscopic bioconvective patterns as a monitor to

assess cadmium toxicity. Biconvection leads to dynamic patterns appearing at critical

concentrations above 105-106 negatively geotaxic organisms ml-I. They arise from

the density inversion of organisms heavier than their suspending media. [3] On the

scale of many millions of organisms, these patterns reflect a variety of cellular

changes including motility, number, density, etc.

Like previous monitors, pattern formation shows cadmium inhibition in a

dose-dependent manner. The advantages of such a monitor are: (1) its greater

sensitivity to detect 1 jaM cadmium levels; (2) relative freedom from complex

laboratory procedures or equipment; and (3) ease in training operators and



portability. The principal disadvantage of such a monitor is its relatively larger

sample size (~200 ml). This volume is required for rapid assay within a few days and

some techniques to avoid the latter difficulty are discussed.

MATERIALS AND METHODS

Stock cultures of the protozoa, Tetrahymena pyri/ormis (ATCC), were

grown axenically in autoclaved proteose peptone/ yeast media. [1] Fresh 100 ml

growth medium was innoculated with 1 ml of cells harvested from stock at a

stationary growth phase. After 2 days, when these cultures attained early

logarithmic growth, they were divided into equal 100 ml portions and

supplemented with cadmium chloride (CdCI 2 * 2.5 H20 ) in a fresh 100 mls of

medium. Final cadmium concentration varied between 1 and 100 J_g/l. Cultures were

incubated at 28.0 C constant temperature during a 24-hr photoperiod (20 lux over

400-700 rim, supplied by cool white fluorescent tubes). The growth of

Tetrahymena was monitored by cell counting using a hemacytometer.

Within 2-3 days following final seeding, biconvective patterns were induced

by first concentrating the cultures. This was accomplished in 200 ml portions,

wherein the cells were harvested by drip filtration (either with 25 psia vacuum

pressure or without pumping) through a 0.2 _tm mesh. Over several hours, the

unattended culture volume was allowed to fall to 10 mls, thus yielding a maximum

organism density of approximately 106 ml -I

The assay was carried out in Petri dishes, 4.8 cm in diameter and 0.8 mm in

depth. The 10 ml lots of concentrated cultures (media plus organisms) was

transferred from filters to dishes using 5 ml plastic pippettes. Protozoan growth was

assessed quantitatively by measuring the formation times of macroscopic patterns

and the number of nodal points in the pattern. These measures have been used

previously to monitor organism activity within a pattern. [4] In a similar vein,

qualitative observations of pattern clarity also reflect both organism viability and

population across a narrow range of cadmium concentrations.

RESULTS AND DISCUSSION

The assay method was tested by examining the effects of cadmium

concentrations between 1-100 J_g/l Cd +2. Each dilution inhibited growth sharply

over a narrow range and the median inhibitory concentration was estimated to be

between 5-7 _tg/l Cd +2. The dose dependence of macroscopic pattern response

paralleled previous growth studies, [1] but with slightly greater sensititivity in the 1-

5 J_g/1 Cd +2 range. Motility or size changes, each of which individually could



accountfor this improved sensitivity (compared to cell counting alone), was not

examined, although qualitatively cadmium exposure tended to result in irregular size

changes [1] and slowed motility.

For different cadmium levels, comparison of polygonal patterns can be aided

by a statistical set characterized by average pattern size, the probability distribution

of polygons according to the number of sides, and the correlation between the

number of polygonal sides and the average number of sides for its neighbors. Thus

by photographing patterns, then digitizing the images, bioconvective patterns can be

compared not only to detect cadmium, but also to match with other two-

dimensional networks such as foam layers and crystal grain boundaries. These have

recently been reviewed. [5] Many of these quantitative relations are universal, such as

a linear dependence of average cell perimeter on the number of sides. These laws

continue to hold for different cadmium levels, but with varying coefficients which

offer additional techniques to detect the presence of heavy metals.

Culture age was examined, since it is known that with increasing age

Tetrahymena respiratory capacity decreases and pH increases. Because of small

diluent volumes, the effect of cadmium addition on pH, osmolarity, gas tensions,

etc. are negligible. Systematic variation of these variables, nevertheless, has been

reported to have .no measurable effect on their viability as chemical indicators. [6]

There was good agreement between the current growth curves (figs. 1 and 2),

previously published results [1] for Tetrahymena, and the bioconvective indicator

employed macroscopically.

Tetrahymena is a well-characterized organism, long used as a biological

indicator. [7] The biological action of cadmium has been described previously. [1] As

seen after 2 days' exposure to 10 _tM Cd +2, Tetrahymena undergoes changes in

cytoplasm and nucleus. In macronucleus, the nucleoli show irregular shape and

consist of mainly fibrillar material; these effects have been attributed to the

inhibition of RNA synthesis. In cytoplasm, irregularly-shaped autophagic vacuoles

appear with increased lipid drops and dense granules. In cells exposed to 100 jaM

cadmium, mitochondrial disintegration occurs within 1 hour of exposure. In addition

to ultrastructure changes, chemical content is disturbed--both an accumulation of

2.4 mmoles of cadmium per kg of wet cells (after 2 days exposure) and enhanced

sulfur content. It is known that cells synthesize metal- chelating, sulfur-rich proteins

(e.g., metallothioneins) in the presence of heavy metals, notably cadmium.

The use of microorganisms to detect toxicity has been reviewed. [8] The

heavy metal cadmium was used here to illustrate the potential usefulness of

bioconvective patterns as a monitor for assays. By culturing for only 3 days, the

Tetrahymena assay was able to detect to ! J_g/i Cd +2. The assay is simple to

perform and requires no elaborate apparatus or procedure. Tetrahymena grows

rapidly and reliably in axenic media and following growth, no special precautions are



requiredto maintainsterility during theassay.
While for the present test the method described is adequate, some

improvementscan increasesensitivity and convenience.For example,other media
choices(such as defined Rosenbaum'smedium) show a protective effect for
cadmiumwith an approximately50%survival rateat cadmiumdosageswhich prove
lethal in proteose-peptone.[1] It is possiblethat a shortergrowth time (<3 days)is
obtainableusing largerculture volumes,which then canbe filtered to the same10
ml for final testing.However,if largervolumesare inconvenient,smallvials (-10-20
ml) canbeusedwith anextendedgrowth time. Other workershavereportedpattern
formation spontaneouslyand without any filtration or other concentrationscheme.
[3]Hencein principle a successfulassayoutcomeshouldprove possiblewithout any
transferof cells,but ratherin the smallertestdishesthemselves.
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Figure 1. Effect of cadmium on the growth of Tetrahymena pyriformis popula-

tion. The cultures were supplemented with cadmium at time T=0 hours. The

concentration of cadmium is shown at right between 0-10 _g/1 Cd +2.
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Figure 2. Effect of low doses of cadmium on the growth of Tetrahymena

pyriformis population. The cultures were supplemented with cadmium at time

T=0 hours. The concentration of cadmium is shown at right between 0-3 _g/1

Cd ÷2 "
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Figure 3. Characteristic Tetrahymena pyriformis bioconvective patterns as a

function of cadmium concentration between 0-3 _g/1 Cd ÷2.
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Figure 4. Formation times for Tetrahymena pyriformis bioconvective patterns

as a function of cadmium concentration. Runs 1 and 2 were for different

cultures and organism counts, but both detected the difference between 0-1
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depths but for the same organism counts, but both detected the difference

between 0-I _g/l Cd +2.
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n-sided pattern found within a general network with average <n>. Results show
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terns as a function of cadmium concentration between 0-3 _g/1 Cd ÷2. Results

show an abrupt change between 1-3 _g/1 Cd ÷2.
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pyriformis patterns as a function of cadmium concentration between 0-3 $_g/1

Cd ÷2. All three cadmium levels indicate a correlation between the number of

sides of a polygon, n, and the average number of sides of its neighbors, m(n).

Aboav's law predicts the relation plotted as the solid line, whereas the

broken llne is a least squares fit (LSF) of the data for 0 _g/1 Cd ÷2.
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Figure 11. Average polygonal area <an>/<at> as a function of n sides for

bioconvective polygons of Tetrahymena pyriformis patterns as a function of

cadmium concentration between 1-3 _g/1 Cd ÷2. Data for 1 _g/1 Cd ÷2 indicate a

linear fit would be appropriate. Results show an abrupt change between 1-3

_g/l Cd +2 .
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Figure 12. Average polygonal perimeter <pn>/<pt> as a function of n sides for

bioconvective polygons of Tetrahymena pyriformis patterns as a function of

cadmium concentration between 1-3 _g/1 Cd ÷2. Data for 1 Bg/1 Cd ÷2 indicate a

linear fit would be appropriate. Results shown an abrupt change between 1-3

_g/1 Cd ÷2 .
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Figure 13. Average maximum polygonal dimension D as a function of n sides for

bioconvective polygons of Tetrahymena pyriformis patterns as a function of

cadmium concentration between 1-3 _g/1 Cd ÷2. Data for 1 _g/1 Cd ÷2 indicate a

linear fit would be appropriate. The units of D represent a relative length

for comparison, as calculated from D=(4A) I/2/_ and Fig. Ii. Results show an

abrupt change between 1-3 _g/1 Cd +2.
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Some universal characteristics appear as seen in- Cases I-III, this bioconvec-

tive work on cadmium; case IV, Ports model, Srolovitz et al. [9] ; case v, soap

foams, Stavans and Glazier [10]; case VI, continuum model, Beenekker [11];

case VII, vertex model I, Kawasaki et al. [12] ; case VIII, vertex model II,

Kawasaki et al. [13]; case IX, Langmuir monolayers of foam [5].
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